Explanation:
A synthesis reaction: It is defined as a kind of reaction where one and more than one reactant attached and creates an individual product.
The formation of the water is an example of a synthesis reaction because here more than one reactants combine and create a single product (water). Water formation occurs when 2 hydrogens and an oxygen share electrons through covalent bonds.
2H + O ----> H2O.
This problem is very easy to answer. You simply have to look at the subscripts of each element of the compound.
1. For caffeine, which has a molecular formula of C₈H₁₀N₄O₂, it contains 8 atoms of Carbon, 10 atoms of Hydrogen, 4 atoms of Nitrogen and 2 atoms of Oxygen.
2. For Iron(III) Sulfate, which has a molecular formula of Fe₂(SO₄)₃, it contains 2 atoms of Iron, 3 atoms of Sulfur, and 12 atoms of Oxygen.
Answer:
625.46 °C
Explanation:
We'll begin by converting 19 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 19 °C
T(K) = 19 °C + 273
T(K) = 292 K
Next, we shall determine the Final temperature. This can be obtained as follow:
Initial volume (V₁) = 3.25 L
Initial temperature (T₁) = 292 K
Final volume (V₂) = 10 L
Final temperature (T₂) =?
V₁/T₁ = V₂/T₂
3.25 / 292 = 10 / T₂
Cross multiply
3.25 × T₂ = 292 × 10
3.25 × T₂ = 2920
Divide both side by 3.25
T₂ = 2920 / 3.25
T₂ = 898.46 K
Finally, we shall convert 898.46 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 898.46 K
T(°C) = 898.46 – 273
T(°C) = 625.46 °C
Therefore the final temperature of the gas is 625.46 °C
The statement which is true is
Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
<u><em>Explanation</em></u>
Fluorine has electron configuration of 1S²2S²2P⁵ while nitrogen has 1S²2S²2P³ electron configuration.
The 2P sub shell for nitrogen is half filled therefore it is sable than fluorine.
since p orbital can hold a maximum of 6 electrons ,Fluorine requires 1 electron to completely fill it's 2P sub shell which make it more reactive than nitrogen.