From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
.5 mols
Assuming that your 2.0 m is an M for molarity
I used the formula M=number of mold/L
Converted 250mL to .250L by dividing by 1000
Answer:
The pH of the solution is 7, 52
Explanation:
The pH gives us an idea of the acidity or alkalinity of a solution. Is calculated:
pH = -log (H +)
pH= -log ( 3x10-8)= <em>7, 52</em>
Answer:
Some of the physical changes used by the industrial chemist in order to identify it is by scratching it with other metals in order to find the hardness of it. Trying to deform it in order to find the malleability, and to heat it and measure the temperature in order to find the melting point.
Some of the chemical changes used by the industrial chemist in order to identify it is by inserting it in water to observe that whether it reacts with it or not, if the reaction is violent, then the metal belongs to either group I or group II. The other method is to insert it in acids of distinct strength and to observe its reaction. The metals belonging to the second group react briskly with acids. The other metals react gradually with acids and others are almost inert.
Answer:
Enthalpy of formation = -947.68KJ/mol
Explanation:
Enthalpy of formation is the heat change when one mole of a substance is formed from its element in its standard states and in standard conditions of temperature and pressure. it may be positive or negative, if positive, it is an endothermic reaction where the heat content of the product is greater than that of the reactants, and if negative, it is exothermic reaction - where the heat content of the reactants is greater than the products. the enthalpy of formation is measured in KiloJoule/Moles (KJ/Mole).
From the value of the enthalpy of formation of NaHCO3, it shows that the reaction is exothermic, that is the formation of NaHCO3 from its constituents elements. As such, the heat content of the reactants is greater than the products.
The step by step explanation is shown in the attachment.