The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
<h3 /><h3>What is speed?</h3>
Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.
To calculate the speed of the sound in the xenon, we use the formula below.
Formula:
- v = λf............. Equation 1
Where:
- v = Speed of the sound in xenon
- f = Frequency
- λ = Wavelength.
From the question,
Given:
- f = 440 Hz
- λ = 40.4 cm = 0.404 m
Substitute the values above into equation 1
- v = 440(0.404)
- v = 177.76 m/s.
- v ≈ 178 m/s
Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
Learn more about speed here: brainly.com/question/4931057
As temperature decreases, the steel will contract (volume decreases) thereby, an increase in Density.
Answer:

Explanation:
Given


Required
Determine the distance at which the lighting struck
First, we need to determine the speed at which the lighting struck because the peed of sound varies with temperature.
At about 28C, the speed of sound is 346m/s
So, we have the following:


Distance is calculated as thus:



Divide by 1000 to get distance equivalent in kilometers


---- Approximated
Answer:
You can make an electromagnet stronger by doing these things: wrapping the coil around a piece of iron (such as an iron nail) adding more turns to the coil. increasing the current flowing through the coil.
Explanation: