Answer:
The Prandtl number for this example is 14,553.
Explanation:
The Prandlt number is defined as:

To compute the Prandlt number for this case, is best if we use the same units in every term of the formula.

Now that we have coherent units, we can calculate Pr

The amount of heat (in calories) needed to raise the temperature is 324.885 calories
<h3>How to determine the temperature change </h3>
We'll begin by obtaining the temperature change. This can be obtained as followed:
- Initial temperature (T₁) = 14 °C
- Final temperature (T₂) = 25 °C
- Change in temperature (ΔT) = ?
ΔT = T₂ - T₁
ΔT = 25 - 14
ΔT = 11 °C
<h3>How to determine the heat (in Calories)</h3>
The amount of heat needed to raise the temperature can bee obtaimedals follow:
- Mass (M) = 33 g
- Change in temperature (ΔT) = 11 °C
- Specific heat capacity (C) of diethyl ether = 0.895 cal/g°C
- Heat (Q) =?
Q = MCΔT
Q = 33 × 0.895 × 11
Q = 324.885 calories
Thus, the amount of heat needed is 324.885 calories
Learn more about heat transfer:
brainly.com/question/10286596
#SPJ1
Answer:
Fe(OH)2
Explanation:
Iron hydroxides are chemical compounds that appear as precipitates after alkalizing solutions containing iron salts, both in their valence or degree of oxidation (III) and (II).
Hydroxide, in both cases, is a gelatinous colloid of difficult filtration that can be considered a hydrated oxide, iron (II) hydroxide is whitish in color and requires more alkalinization, above 7.
Answer:
the answer is
the electronegativity of the elements from L to R increases
Answer:
c) two different elements
Explanation:
A periodic table can be defined as the standard arrangement of chemical elements by atomic number, electronic configuration and chemical properties in a tabular form.
Generally, a proper representation of the mass number and atomic number of chemical elements is key and very important in chemistry.
Furthermore, as a rule, it should be noted that the mass number (nucleon number) is always larger than the atomic number(number of proton).
In the periodic table, all chemical elements are identified based on number of protons because it represents the atomic number.
This ultimately implies that, numbers of protons (atomic numbers) is used to differentiate an atom of one chemical element from the atom of another chemical element.
Hence, two atoms with different numbers of protons are two different elements.
For example, Hydrogen has one proton while Oxygen has 8 protons.