Answer: 40.68 kPa
Explanation:
Given that,
Original volume of gas V1 = 21.7 mL
Original pressure of gas P1 = 98.8 kPa
New volume of gas V2 = 52.7 mL
New pressure of gas P2 = ?
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
98.8 kPa x 21.7 mL = P2 x 52.7L
2143.96 kPa L = 52.7 L x P2
P2 = 2143.96 kPa L / 52.7 L
P2 = 40.68 kPa
Thus, the new pressure of the gas is 40.68 kPa.
It seems like the answer is C, you really just need to use the process of elimination.
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Answer:
The equilibrium between the two forms of the gas is disturbed at high temperatures.
Answer:
Mass = 0.000176 gram
Steps:
m = V × ρ
= 20 milliliter × 8.8 gram/cubic meter
= 2.0E-5 cubic meter × 8.8 gram/cubic meter
= 0.000176 gram
Explanation: