Answer:
We are given that,
The equation of the rainbow is represented by the parabola,

Now, we are required to find a linear equation which cuts the graph of the parabola at two points.
Let us consider the equation joining the points (-6,0) and (0,36), given by
.
So, the corresponding table for the linear equation is given by,
x 
-6 0
0 36
1 42
6 72
Now, we will answer the questions corresponding the functions.
1. Domain and Range of the rainbow.
Since, the equation of the rainbow is 
So, from the figure, we get that,
Domain is the set of all real numbers.
Range is the set 
<em>Here, domain represents the points which are used to plot the path of the rainbow and range represents the points which are form the rainbow.</em>
Not all points make sense in the range as the parabola is opening downwards having maximum point as (0,36).
2. X and Y-intercepts of the rainbow.
<em>As, the 'x and y-intercepts are the points where the graph of the function cuts x-axis and y-axis respectively i.e. where y=0 and x=0 receptively'.</em>
We see that from the figure below,
X-intercepts are (-6,0) and (6,0) and the Y-intercept is (0,36)
<em>Here, these intercepts represents the point where the parabola intersects the individual axis.</em>
3. Is the linear function positive or negative.
As the linear function is
represented by the <em>upward flight of the drone.</em>
So, the linear function is a positive function.
4. The solution of the system of equations is the intersection points of their graphs.
So, from the figure, we see that the equations intersect at the points (-6,0) and (0,36).
<em>Thus, the solution represents the position when both the drone and rainbow intersect each other.</em>