Answer:
81,3 ft to the nearest tenth.
Step-by-step explanation:
Tan 19 = 28 / h where h = the horizontal distance.
h = 28 / tan 19
h = 81.3 ft.
9514 1404 393
Answer:
2√30 ∠-120°
Step-by-step explanation:
The modulus is ...
√((-√30)² +(-3√10)²) = √(30 +90) = √120 = 2√30
The argument is ...
arctan(-3√10/-√30) = arctan(√3) = -120° . . . . a 3rd-quadrant angle
The polar form of the number can be written as ...
(2√30)∠-120°
_____
<em>Additional comments</em>
Any of a number of other formats can be used, including ...
(2√30)cis(-120°)
(2√30; -120°)
(2√30; -2π/3)
2√30·e^(i4π/3)
Of course, the angle -120° (-2π/3 radians) is the same as 240° (4π/3 radians).
__
At least one app I use differentiates between (x, y) and (r; θ) by the use of a semicolon to separate the modulus and argument of polar form coordinates. I find that useful, as a pair of numbers (10.95, 4.19) by itself does not convey the fact that it represents polar coordinates. As you may have guessed, my personal preference is for the notation 10.95∠4.19. (The lack of a ° symbol indicates the angle is in radians.)
Answer:
37
Step-by-step explanation:
The first thing is to calculate critical z factor
the alpha and the critical z score for a confidence level of 90% is calculated as follows:
two sided alpha = (100% - 90%) / 200 = 0.05
critical z factor for two sided alpha of .05 is calculated as follows:
critical z factor = z factor for (1 - .05) = z factor for (.95) which through the attached graph becomes:
critical z factor = 2.58
Now we have the following formula:
ME = z * (sd / sqrt (N) ^ (1/2))
where ME is the margin of error and is equal to 6, sd is the standard deviation which is 14 and the value of z is 2.58
N the sample size and we want to know it, replacing:
6 = 2.58 * (14 / (N) ^ (1/2))
solving for N we have:
N = (2.58 * 14/6) ^ 2
N = 36.24
Which means that the sample size was 37.
1-rotational
2-rotational
3-rotational
4-neither
(I’m like 99% sure)
Mouses steal cheese.Or idk