CaCl2 and KCl are both salts which dissociate in water
when dissolved. Assuming that the dissolution of the two salts are 100 percent,
the half reactions are:
<span>CaCl2 ---> Ca2+ + 2 Cl-</span>
KCl ---> K+ + Cl-
Therefore the total Cl- ion concentration would be coming
from both salts. First, we calculate the Cl- from each salt by using stoichiometric
ratio:
Cl- from CaCl2 = (0.2 moles CaCl2/ L) (0.25 L) (2 moles
Cl / 1 mole CaCl2)
Cl- from CaCl2 = 0.1 moles
Cl- from KCl = (0.4 moles KCl/ L) (0.25 L) (1 mole Cl / 1
mole KCl)
Cl- from KCl = 0.1 moles
Therefore the final concentration of Cl- in the solution
mixture is:
Cl- = (0.1 moles + 0.1 moles) / (0.25 L + 0.25 L)
Cl- = 0.2 moles / 0.5 moles
<span>Cl- = 0.4 moles (ANSWER)</span>
Hey ! a highland is a area of high or mountainous land. you got this babe<333
Answer:
Iron's atomic number is 26
Explanation:
Answer:
C) The compound is largely ionic with A as the cation.
Explanation:
Pulings proposed the method to determine if the compound is ionic in nature or covalent in nature , by finding the difference between the electronegativity of the respective cation and anion .
The ion with higher electronegativity is the anion and the ion with lower electronegativity is the cation.
The electronegativity difference above 1.7 make the compound ionic in nature.
Hence, from the question ,
A is the cation and B is the anion.
And the electronegativity difference above 1.7 so the compound is ionic in nature.
Answer: 131 g of bromine is required.
Explanation:
The balanced equation will be :

To calculate the moles, we use the equation:
moles of
According to stoichiometry :
2 moles of
require = 3 moles of
Thus 0.544 moles of
require=
of
Mass of
Thus 131 g of bromine is required.