Explanation:
1 mol = 22.4 l
5.42 mol = 22.4 × 5.42 = 121.408
in two decimal place it is 121.41
Answer:
ions
Explanation:
atoms because of the charge
Explanation:
The number of moles of solute present in liter of solution is defined as molarity.
Mathematically, Molarity = 
Also, when number of moles are equal in a solution then the formula will be as follows.

It is given that
is 8.00 M,
is 7.00 mL, and
is 0.80 M.
Hence, calculate the value of
using above formula as follows.



= 70 ml
Thus, we can conclude that the volume after dilution is 70 ml.
Answer:
W = -120 KJ
Explanation:
Since the piston–cylinder assembly undergoes an isothermal process, then the temperature is constant.
Thus; T1 = T2 = 400K
change in entropy; ΔS = −0.3 kJ/K
Formula for change in entropy is written as;
ΔS = Q/T
Where Q is amount of heat transferred.
Thus;
Q = ΔS × T
Q = -0.3 × 400
Q = -120 KJ
From the first law of thermodynamics, we can find the workdone from;
Q = ΔU + W
Where;
ΔU is Change in the internal energy
W = Work done
Now, since it's an ideal gas model, the change in internal energy is expressed as;
ΔU = m•C_v•ΔT
Where;
m is mass
C_v is heat capacity at constant volume
ΔT is change in temperature
Now, since it's an isothermal process where temperature is constant, then;
ΔT = T2 - T1 = 0
Thus;
ΔU = m•C_v•ΔT = 0
ΔU = 0
From earlier;
Q = ΔU + W
Thus;
-120 = 0+ W
W = -120 KJ
Answer is B can you like btw??