Most directly on equador and least directly at poluses
Yes! with out the sun plants and animals wouldnt live right? therefore they get energey wich is passed on by food
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds
Let's use the mirror equation to solve the problem:

where f is the focal length of the mirror,

the distance of the object from the mirror, and

the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for

by using the numbers given in the text of the problem:



Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.