1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
5

Two isolated, concentric, conducting spherical shells have radii R1 = 0.500 m and R2 = 1.00 m, uniform charges q1=+2.00 µC and q

2 = +1.00 µC, and negligible thicknesses. What is the magnitude of the electric field E at radial distance (a) r = 4.00 m, (b) r =0.700 m, and (c) r = 0.200 m? With V = 0 at infinity, what is V at (d) r = 4.00 m, (e) r = 1.00 m, (f) r = 0.700 m, (g) r = 0.500 m, (h) r = 0.200 m, and (i) r = 0? (j) Plot the E(r) and V(r) dependencies.

Physics
1 answer:
scZoUnD [109]3 years ago
8 0

Complete Question

The diagram for this question is shown on the first uploaded image  

Answer:

a E =1.685*10^3 N/C

b E =36.69*10^3 N/C

c E = 0 N/C

d V = 6.7*10^3 V

e   V = 26.79*10^3V

f   V = 34.67 *10^3 V

g   V= 44.95*10^3 V

h    V= 44.95*10^3 V

i    V= 44.95*10^3 V

Explanation:

From the question we are given that

       The first charge q_1 = 2.00 \mu C = 2.00*10^{-6} C

       The second charge q_2 =1.00 \muC = 1.00*10^{-6}

      The first radius R_1 = 0.500m

      The second radius R_2 = 1.00m

 Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}

And Potential \ Difference = \frac{1}{4\pi \epsilon_0}   [\frac{q_1 }{r}+\frac{q_2}{R_2} ]

The objective is to obtain the the magnitude of electric for different cases

And the potential difference for other cases

Considering a

                      r  = 4.00 m

           E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}

                = 1.685*10^3 N/C

Considering b

           r = 0.700 m \ , R_2 > r > R_1

This implies that the electric field would be

            E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}

             This because it the electric filed of the charge which is below it in distance that it would feel

            E = 8*99*10^9  \frac{2*10^{-6}}{0.4900}

               = 36.69*10^3 N/C

   Considering c

                      r  = 0.200 m

=>   r

 The electric field = 0

     This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field

       Considering d

                  r  = 4.00 m

=> r > R_1 >r>R_2

Now the potential difference is

                  V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V

This so because the distance between the charge we are considering is further than the two charges given  

          Considering e

                       r = 1.00 m R_2 = r > R_1

                V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V

          Considering f

              r = 0.700 m \ , R_2 > r > R_1

                      V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V

          Considering g

             r =0.500\m , R_1 >r =R_1

   V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

          Considering h

                r =0.200\m , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

           Considering i    

   r =0\ m \ , R_1 >R_1>r

  V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2}  ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V

You might be interested in
What is your opinion on Fluorinated gases
Nikolay [14]

Answer: Fluorinated gases (F-gases) are man-made gases that can stay in the atmosphere for centuries and contribute to a global greenhouse effect. this is extremely bad for the earth and is causing downpour on our plants and animals. Why would we creat gases we can not get rid of its ver diapointing

3 0
3 years ago
A sound wave travels in air toward the surface of a freshwater lake and enters into the water. The frequency of the sound does n
Shkiper50 [21]

Answer:

Explanation:

velocity of sound in air at 20⁰C is 343 m /s

velocity of sound in water at 20⁰C is 1481 m /s

The wavelength of the sound is 2.86 m in the air so its frequency

= 343 / 2.86 = 119.93 .

This frequency of  119.93 will remain unchanged in water .

wavelength in water = velocity in water / frequency

= 1481 / 119.93

= 12. 35 m .

7 0
3 years ago
An adult with a BMI of 25 to 30 is considered
soldier1979 [14.2K]
Option A overweight

HOPE IT HELPS!!
4 0
3 years ago
Read 2 more answers
Classify the following situations into contact and non-contact forces.
NARA [144]

Answer: Contact force

a. Applying break in a vehicle.

d. The speed of ball rolling on ground is reduced

Non contact force

b. A coconut falling from a coconut tree.

c. The planets revolving around the sun.

Explanation:

The contact force is the force which exerts when one object or entity comes in contact with other object or entity. For example, on application of break the vehicle stops, the force is applied on the breaks to stop the vehicle. The ball rolling on the ground the speed reduces so the application of force on the ground also reduces.

The non contact force is the force one object exerts on the other without coming in direct contact with the other object. The force exerted by one object on other due to gravity is a non contact force. The coconut falling on the ground and planets revolving around the sun are examples of non contact force due to gravity.

8 0
3 years ago
An object is made up of three masses connected by massless rods of fixed length. Mass A is located at (30.0 cm, 0 cm) and has a
puteri [66]

Answer:

0.0605 Kg m^2

Explanation:

In this case where we have find he moment of inertia of this object about an axis perpendicular to the x-y plane and passing through the origin,  we can just add three moment of inertia's .

MOI= 0.25×0.3^2 + 0.35×0.4^2- 0.45×0.2^2

= 0.0605 Kg m^2

8 0
3 years ago
Other questions:
  • This equation is known as the ideal gas law, and it can be used to predict the behavior of many gases at relatively low pressure
    10·1 answer
  • If τ=r×F then F.τ is equal
    15·1 answer
  • When a liquid has vapor pressure equal to atmospheric pressure, it?
    12·2 answers
  • An injured monkey sits perched on a tree branch 9 m above the ground, while a wildlife veterinarian is kneeling down in the bush
    5·1 answer
  • An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which
    10·1 answer
  • When the air resistance can be ignored the velocity of an object dropped initially from rest is given by the following equation
    6·2 answers
  • Inserting the formulas you found for Xman(t) and Xbus(t) into the conditionXman(tcatch)=Xbus(tcatch) , you obtain the following-
    5·1 answer
  • A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
    5·1 answer
  • 5. A current of 3.00 A flows through a resistor when it is connected
    15·1 answer
  • William drew a diagram of a box containing a gas for his science project. His drawing is shown.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!