Answer:
https://www.quora.com/The-following-chemical-reaction-shows-the-decomposition-of-water-to-form-hydrogen-gas-and-oxygen-gas-2H2O-I-produces-2H2-g-O2-g-if-10-0-grams-of-water-reacted-and-you-found-1-11-grams-of-H2-formed-how-many-of-O2
Explanation: i hope ths helps you
Answer: C
Explanation:
According to Neils Bohr, atoms contain electrons which are arranged in energy levels. The energy levels proceed from the lowest to the highest. When energy is supplied to an atom,it moves from lower to higher energy levels. The higher energy level is known as the excited state. Excited states are short lived and atoms quickly return to ground state with emission of the absorbed energy in the form of visible light. This visible light must have one of the seven colours observed in the visible spectrum; Red, orange, yellow, indigo, blue, green, violet. Energy required for this excitation is supplied by heating the substance in a flame.
Answer:
30 kJ
Explanation:
Arrhenius equation is given by:

Here, k is rate constant, A is Pre-exponential factor, Ea is activation energy and T is temperature.
taking natural log of both side
ln k = ln A - Ea/RT
In Arrhenius equation, A, R and T are constant.
Therefore,

is the lowering in activation energy by enzyme,
R = 8.314 J/mol.K
T = 37°C + 273.15 = 310 K


A. The heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
<h3>What is Specific heat capacity?</h3>
Specific heat capacity is the quantity of heat needed to raise the temperature per unit mass.
<h3>
Heat needed to melt the cube of ice</h3>
The heat is needed to melt 100.0 grams of ice that is already at 0°C is calculated as follows;
Q = mL
where;
- m is mass of the ice
- L is latent heat of fusion of ice = 334 J/g
Q = 100 x 334
Q = 33,400 J
Thus, the heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
Learn more about heat capacity here: brainly.com/question/16559442
#SPJ1