The formula for speed is speed = distance ÷ time. To work out what the units are for speed, you need to know the units for distance and time. In this example, distance is in metres (m) and time is in seconds (s), so the units will be in metres per second (m/s).
<span>Too much B. potassium can
slow and eventually stop the heart, and supplements should be taken only
under the care of a physician.
</span>
All phase changes either have an increase or decrease of Intermolecular forces involved.
Answer:
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Explanation:
The equilibrium constant will remain the same irrespective of the amount of reactant taken.
Let us calculate the equilibrium constant of the reaction.
Kc=![\frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BPCl_%7B3%7D%5D%5BCl_%7B2%7D%5D%7D%7B%5BPCl_%7B5%7D%5D%7D)
Let us calculate the moles of each present at equilibrium

molar mass of PCl₅=208
molar mass of PCl₃=137
molar mass of Cl₂=71
moles of PCl₅ = 
moles of PCl₃= 
moles of Cl₂ = 
the volume is 5 L
So concentration will be moles per unit volume
Putting values
Kc = 
Now if the same moles are being transferred in another beaker of volume 2L then there will change in the concentration of each as follow

Initial 0.02 0.06 0.04
Change -x +x +x
Equilibrium 0.02-x 0.06+x 0.04+x
Conc. (0.02-x)/2 (0.06+x)/2 (0.04+x)/2
Putting values
0.024 = 
Solving



x = -0.01
so the new moles of
PCl₅ = 0.02 + 0.01 =0.03
PCl₃ = 0.06-0.01 = 0.05
Cl₂ = 0.04-0.01 = 0.03
mass of each will be:
mass= moles X molar mass
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Answer:
0.567 g/mL
Explanation:
First, we will find the mass of the liquid. Subtract the weight of the empty cylinder from the weight of the filled cylinder
110.81 - 82.45 = 28.36
The mass of the liquid is 28.36 g.
Now, we find the density by dividing the mass by volume
28.36/50 = 0.5672