Answer:
= 3,126 m / s
Explanation:
In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.
the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s
Before the crash
p₀ = m v₁₀ + M v₂₀
After the inelastic shock
= m
+ M
p₀ = 
m v₀ + M v₂₀ = m
+ M
We cleared the end of the train
M
= m (v₁₀ - v1f) + M v₂₀
Let's calculate
3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45
= (-3.9 + 8.82) /3.60
= 1.36 m / s
As we can see, this speed is lower than the speed of the car, so the two bodies are joined
set speed must be
m v₁₀ + M v₂₀ = (m + M)
= (m v₁₀ + M v₂₀) / (m + M)
= (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)
= 3,126 m / s
1. Marie and her husband discovered polonium, a new radioactive element, and radium. Marie was the first woman to receive a Novel Prize , and two in her lifetime. She was also the first scientist to receive two Nobel Prizes. Not only that, she was the first person to receive two Nobel Prizes in two different fields, Chemistry and Physics. During World War 1 Marie helped soldiers by creating the x ray. After the war ended Marie raised money to help cure and treat disease using radiology.
2. I am not exactly sure what is happening in that picture but it looks like a boat floating on sea than sunken by a shipwreck on dry land.
<span> velocity increases by √3</span>
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.