Answer:
(a) 
(b) 
Explanation:
<u>Electric Circuits</u>
Suppose we have a resistive-only electric circuit. The relation between the current I and the voltage V in a resistance R is given by the Ohm's law:

(a) The electromagnetic force of the battery is
and its internal resistance is
. Knowing the equivalent resistance of the headlights is
, we can compute the current of the circuit by using the Kirchhoffs Voltage Law or KVL:

Solving for i

i=2.28\ A
The potential difference across the headlight bulbs is


(b) If the starter motor is operated, taking an additional 35 Amp from the battery, then the total load current is 2.28 A + 35 A = 37.28 A. Thus the output voltage of the battery, that is the voltage that the bulbs have is

If the force and the motion are along the same direction (like it is here) then work is force*distance. The time doesn't come into play until you want the power used. So here
W=9.0*3.0=27J
Liquid water because if it said very high then it would be water vapor but it didn’t say that so the answer is B liquid water