Answer:
For example, a suitcase jam-packed with clothes and souvenirs has a high density, while the same suitcase containing two pairs of underwear has low density. Size-wise, both suitcases look the same, but their density depends on the relationship between their mass and volume. Mass is the amount of matter in an object.
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.

Answer:
19.6 J
Step-by-step explanation:
Before the ball is dropped, it has a <em>potential energy
</em>
PE = mgh
PE = 0.2 × 10 × 9.8
PE = 19.6 J
Just before the ball hits the ground, the potential energy has been converted into kinetic (<em>mechanical</em>) energy.
KE = 19.6 J
Answer:
Group 8 or Group 0
Explanation:
Group 8 or Group 0 are generally inert gases with Helium as the first member in that group. Their complete duplet (in the case of Helium) and Octet (in the case of Neon) configuration makes them very stable and chemically un-reactive.