Answer:
HCl(aq) + KOH(aq) —> KCl(aq) + H2O(l)
Explanation:
Aqueous solution of HCl and aqueous solution of KOH react as follow:
HCl(aq) + KOH(aq) —>
In solution, HCl and KOH will dissociates as follow:
HCl —> H+ + Cl-
KOH —> K+ + OH-
During the reaction, a double displacement reaction occur as shown below:
H+ + Cl- + K+ + OH- —> K+Cl- + H+OH-
The elemental equation is given below:
HCl(aq) + KOH(aq) —> KCl(aq) + H2O(l)
Answer:
1) Increases
2) decreases
3) increases
4) decreases
Explanation:
When the intermolecular forces in a liquid increases, the greater vapour pressure of the liquid decreases accordingly.
Since the vapour pressure is proportional to temperature, as temperature increases, the vapour pressure increases alongside.
As intermolecular forces increases, the boiling point increases accordingly since more energy is required to break intermolecular bonds.
Lastly, the greater the surface area, tell greater the vapour pressure since more liquid surface area is now available.
Answer:
O, C, Bo, and Br are NOT correct
Explanation:
Carbon's atomic number is 5
Bromine's mass number is 79.9
Oxygen's mass number is 16.00
Bo is not an element
Answer:
Hey, use this formula
Explanation:
1 mole of carbon has 6.022 × 1023 carbon atoms so what about 79.7 moles?
cross multiply and thats the answer
Either carbon monoxide or NaOH