Explanation:
Hi for this one u just need to remember and use the equation.

then u find mr of potassium which is 39.1.
then u do

you get the answer as 0.5115 write ur answer to 3 significant figures which will be 0.512 moles .
hope this helps :)
The second option only.
<h3>Explanation</h3>
A base neutralizes an acid when the two reacts to produce water and a salt.
Sulfuric acid H₂SO₄ is the acid here. There are more than one classes of bases that can neutralize H₂SO₄. Among the options, there are:
Metal hydroxides
Metal hydroxides react with sulfuric acid to produce water and the sulfate salt of the metal.
.
The formula for calcium sulfate
in option A is spelled incorrectly. Why? The charge on each calcium
is +2. The charge on each sulfate ion
is -2. Unlike
ions, it takes only one
ion to balance the charge on each
ion. As a result,
and
ions in calcium sulfate exist on a 1:1 ratio.
.
Ammonia, NH₃
Ammonia NH₃ can also act as a base and neutralize acids. NH₃ exists as NH₄OH in water:
.
The ion
acts like a metal cation. Similarly to the metal hydroxides, NH₃ (or NH₄OH) neutralizes H₂SO₄ to produce water and a salt:
.
The formula of the salt (NH₄)₂SO₄ in the fourth option spelled the ammonium ion incorrectly.
As part of the salt (NH₄)₂SO₄, the ammonium ion NH₄⁺ is one of the products of this reaction and can't neutralize H₂SO₄ any further.
Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.
Answer:
Explanation:
E.92
Hay are you single how old are you want to be my gf
Answer:
It is referred to as the van't Hoff factor.
Explanation:
The van't Hoff factor is named after the Dutch chemist Jacobus Henricus van 't Hoff. It can also be defined as the ratio of the actual quantity of particles to the quantity of particles for no ionization.The fundamental assumption of the van't Hoff factor is that the substance is a nonelectrolyte.