Using the answer from the first part, we know that 2.957 moles of bismuth have formed. Moreover, the molar ratio between bismuth and carbon monoxide is:
2 : 3
Using the method of ratios,
2 : 3
2.957 : CO
CO = (3 * 2.957) / 2
CO = 4.4355
4.436 moles of carbon monoxide will be formed
Question:
<em>What effects does the concentration of reactants have on the rate of a reaction?</em>
Answer:
<em>Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.</em>
<em>Increasing the concentration of reactants generally increases the rate of reaction because more of the reacting molecules or ions are present to form the reaction products. ... When concentrations are already high, a limit is often reached where increasing the concentration has little effect on the rate of reaction.</em>
Hope this helps, have a good day. c;
Iron bromide. Iron bromide (FeBr3)
C) Fluorine is the most reactive among halogens
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg