Answer:
beryllium iodide has a molar mass of 262.821 g mol−1 , which means that 1 mole of beryllium iodide has a mass of 262.821 g . To find the mass of 0.02 moles of beryllium iodide, simply multiply the number of moles by the molar mass in conversion factor form.
Explanation:
Answer:
6.022 × 10²² atoms
Explanation:
Generally 1 mol of any element contains 6.02×10^23 atoms. The number 6.022 × 10²³ is known as Avogadro's number.
Mass of Aluminium = 2.70g
Molar mass = 27g/mol
Number of moles = Mass / Molar mass = 2.70 / 27 = 0.1 mol
1 mol = 6.022 × 10²³
0.1 mol = x
x = 6.022 × 10²³ * 0.1 = 6.022 × 10²² atoms
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
Complete Question
Questions Diagram is attached below
Answer:
* 
* 
* 
Explanation:
From the question we are told that:
Temperature 
Pressure 
Volume
Generally the equation for gas Constant is mathematically given by



Therefore
Work-done



Generally the equation for internal energy is mathematically given by


Therefore



Answer: -40
Explanation: Percent error is calculated by subtracting the value you actually recieved from the literature value (175 in your case) SO your answer should be 135-175=-40.