Answer:
4 units left
Step-by-step explanation:
Answer:
<em>Regular </em><em>Area </em><em>of </em><em>trapezoid</em><em> </em><em>u</em><em> </em><em>can </em><em>choose</em><em> </em><em>anyone</em><em> </em><em>either </em><em>this </em><em>one </em><em>A=</em><em>(</em><em>a+</em><em>b)</em><em> </em><em>or </em><em>this </em><em>one </em><em>2</em><em>×</em><em>h</em><em> </em>
<em><u>maybe </u></em><em><u>this </u></em><em><u>might </u></em><em><u>be </u></em><em><u>ur </u></em><em><u>answer</u></em>
Answer:
same:P
Step-by-step explanation:
Let width = w
Let length = l
Let area = A
3w+2l=1200
2l=1200-3w
l=1200-3/2
A=w*l
A=w*(1200-3w)/2
A=600w-(3/2)*w^2
If I set A=0 to find the roots, the maximum will be at wmax=-b/2a which is exactly 1/2 way between the roots-(3/2)*w^2+600w=0
-b=-600
2a=-3
-b/2a=-600/-3
-600/-3=200
w=200
And, since 3w+2l=1200
3*200+2l=1200
2l = 600
l = 300
The dimensions of the largest enclosure willbe when width = 200 ft and length = 300 ft
check answer:
3w+2l=1200
3*200+2*300=1200
600+600=1200
1200=1200
and A=w*l
A=200*300
A=60000 ft2
To see if this is max area change w and l slightly but still make 3w+2l=1200 true, like
w=200.1
l=299.85
A=299.85*200.1
A=59999.985