Answer ;
Minimum required volume = 0.635m3
Maximum internal pressure = 74.35bar
Explanation:
The detailed step by step calculation using the vanderwaal's equation of state for ideal gases is as shown in the attachment.
The energy of a single photon is given by

where

is the Planck constant
f is the frequency of the wave (of the photon)
In our problem, the radio wave has a frequency of

, so if we put this value into the previous formula, we can find the energy of a single photon of this electromagnetic wave:
Answer:
A force pump can be used to raise water by a height of more than 10m, the maximum height allowed by atmospheric pressure using a common lift pump.
In a force pump, the upstroke of the piston draws water, through an inlet valve, into the cylinder. On the downstroke, the water is discharged, through an outlet valve, into the outlet pipe.
The SI unit of force is the Newton.
Joule is the unit of work and energy.
Watt is the unit of power.
Answer:
The Sun is known to emit almost all wavelengths of electromagnetic radiation but 99% of the radiation emitted by the sun lie in the ultraviolet, visible, and infrared regions.
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm to 400 nm (750 THz). The wavelength is shorter than that of visible light but longer than X-rays. UV rays make up about 10% of the e-m waves from the sun. UV radiation is carcinogenic to the skin, and is absorbed by the melanin pigment in the skin.
Visible light is the only e-m wave that our eyes can pick up, i.e the only e-m wave we can see. The frequency of this spectrum corresponds to a band in the vicinity of 405–790 THz. It can further be separated into different colors. It makes up a large portion of the e-m waves coming from the sun.
Infrared wave is an e-m radiation whose wavelengths longer than those of visible light. It is is generally invisible to the human eye. The wavelength of an infrared wave extend from the red edge of the visible spectrum at 700 nanometers (frequency 430 THz), to 1 millimeter (300 GHz). Most of the thermal radiation emitted by objects near room temperature is infrared. Most of the heat from the sun reach us as infrared radiation. As with all e-m radiation, infrared radiation carries radiant energy and behaves both like a wave and like a photon.