Answer: I think its 2.09
Step-by-step explanation:
But i'm not sure.
Well the equation is (A^2)+(B^2)=(C^2)
A= x
B= 2x
C will always be the longest side because it is the Hypotenuse = 25
So if you plug in those numbers into the equation...
(x^2) + (2x^2) = (25^2)
x^2 + 4x^2 = 625
Combine like terms
5x^2 = 625
Divide by five to both sides
x^2 = 125
Then Square root,
x = sqrt(125)
x = sqrt(25* 5)
x = 5sqrt(5)
The sum of the first n odd numbers is n squared! So, the short answer is that the sum of the first 70 odd numbers is 70 squared, i.e. 4900.
Allow me to prove the result: odd numbers come in the form 2n-1, because 2n is always even, and the number immediately before an even number is always odd.
So, if we sum the first N odd numbers, we have

The first sum is the sum of all integers from 1 to N, which is N(N+1)/2. We want twice this sum, so we have

The second sum is simply the sum of N ones:

So, the final result is

which ends the proof.
Answer:
Only d) is false.
Step-by-step explanation:
Let
be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that
. 0 is a root of p, so we have that
.
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.