General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth׳s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium–thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 <span>km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.</span>
Answer:
not see clearly yrr.........
Answer:
The correct answer is C) The compound is an allosteric inhibitor.
Explanation:
An inhibitor works in many ways, but this particular one binds to the allosteric site in the enzyme causing a decrease of the enzymatic activity. When this situation happens, the inhibitor doesn't bind to the active site, but it changes the enzyme's shape so it cannot work properly anymore.
Lthough much of the explanation for why certain substances mix and form
solutions and why others do not is beyond the scope of this class, we
can get a glimpse at why solutions form by taking a look at the
process by which ethanol, C2H5OH, dissolves in
water. Ethanol is actually miscible in water, which means that the two
liquids can be mixed in any proportion without any limit to their
solubility. Much of what we now know about the tendency of particles
to become more dispersed can be used to understand this kind of change
as well.
Picture a layer of ethanol being carefully added to the top of some water (Figure below).
Because the particles of a liquid are moving constantly, some of the
ethanol particles at the boundary between the two liquids will
immediately move into the water, and some of the water molecules will
move into the ethanol. In this process, water-water and
ethanol-ethanol attractions are broken and ethanol-water attractions
are formed. Because both the ethanol and the water are molecular
substances with O−H bonds, the attractions broken between water
molecules and the attractions broken between ethanol molecules are
hydrogen bonds. The attractions that form between the ethanol and
water molecules are also hydrogen bonds (Figure below). There you go
Answer:
I'm not sure but in my condition the answer is a