Answer:
The initial vertical velocity is zero, u = 0 m/s
Explanation:
Given;
height of the table, h = 0.55 m
horizontal distance traveled by the tennis, x = 0.12 m
Apply the following kinematic equation;
h = ut + ¹/₂gt²
where;
u is the initial vertical velocity = 0, since the tennis ball rolled off the edge of a table.
h = ¹/₂gt²
The time to fall from the vertical height is given by;

The initial horizontal velocity of the tennis is given by;
x = vₓt
vₓ = x / t
vₓ = (0.12) / (0.335)
vₓ = 0.358 m/s
Therefore, the initial vertical velocity is zero, u = 0 m/s and initial horizontal velocity, vₓ is 0.358 m/s
Answer:

Explanation:
The strength of the gravitational field at the surface of a planet is given by
(1)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
For the Earth:

For the unknown planet,

Substituting into the eq.(1), we find the gravitational acceleration of planet X relative to that of the Earth:

And substituting g = 9.8 m/s^2,

Speed and velocity have the same magnitudes. The only difference is that speed is a scalar quantity and velocity is a vector quantity. In other words, speed is just a magnitude, while velocity is a magnitude with direction. They're essentially the same.
Let's convert miles to meters and minutes to seconds
1/4 mile = 402.34 meters ( 1 mile = 1609 m)
13.1 minutes = 786 seconds (1 minute = 60 seconds)
Speed is calculated as distance over time, thus,
Speed = (402.34 meters)*8/786 seconds
a.) Speed = 4.1 m./s
b.) Velocity = 4.1 m/s
Answer:
its constant i think
Explanation:
or its stable dunno which term will they be using
Answer: Use less water
only turn on lights when needed
electrical cars
less gas usage
Explanation: