<span>Taking into account the information above, we know the average mass of the bucket of water may be m=20-5/2=17.5kg. As the bucket of water is pulled at a "constant velocity" the work required to raise the bucket to the platform transformed into the potential energy of the bucket of water. That is why it should be W=mgh=17.5*9.8*40=6860J</span>
Answer:
The correct option is a
Explanation:
From the question we are told that
The mass of the block is
The height of the vertical drop is
Generally from the law of energy conservation , the potential energy at the top of the slide is equal to the kinetic energy at the point after sliding this can be mathematically represented as
i.e
=>
=>
=>
Answer:
B = 4.1*10^-3 T = 4.1mT
Explanation:
In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:
(1)
ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2
S: surface area of the circular plate = π.r^2
r: radius of the circular plate = 8.50cm = 0.085m
B: magnitude of the magnetic field = ?
α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°
You solve the equation (1) for B, and replace the values of the other parameters:
The strength of the magntetic field is 4.1mT
Internal energy, U, is equal to the work done or by the system, plus the heat of the system:
<span>ΔU=q+w
</span>in the question they tell you the work done by the system, and the internal energy:
8185 J= -346 J + q work is negative because it was done BY the system.
substitute in: <span>q=m∗Cp∗ΔT</span> and solve for <span>Cp</span><span>.
</span>
-------------------------------------
remember that <span>ΔT=<span>Tf</span>−<span>Ti
</span></span>
so the equation, really, is: <span>q=m∗Cp∗(<span>Tf</span>−<span>Ti</span>)</span><span>
------------------------------------------
</span>
<span>185J=−346J+[m∗Cp∗(<span>Tf</span>−<span>Ti</span>)]
</span>plug in the rest of your values and solve for <span><span>Cp</span></span>
Answer:
False
Explanation:
Water hardness in most groundwater is due to a natural occurrence caused by the weathering of limestone, sedimentary rock and calcium bearing minerals. Hardness can also occur locally in groundwater from chemical and mining industry effluent or excessive application of lime to the soil in agricultural areas.
Limestone is not a metallic element or metallic alloy, although it does contain the metallic element calcium, it is not formed by the same processes as metals are.