It can be measured by an ammeter.
Answer:
52 rad
Explanation:
Using
Ф = ω't +1/2αt²................... Equation 1
Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.
Since the object states from rest, ω' = 0 rad/s.
Therefore,
Ф = 1/2αt²................ Equation 2
make α the subject of the equation
α = 2Ф/t².................. Equation 3
Given: Ф = 13 rad, t = 2.5 s
Substitute into equation 3
α = 2(13)/2.5²
α = 26/2.5
α = 4.16 rad/s².
using equation 2,
Ф = 1/2αt²
Given: t = 5 s, α = 4.16 rad/s²
Substitute into equation 2
Ф = 1/2(4.16)(5²)
Ф = 52 rad.
I think it's The fossil record. The same animal fossil is in Africa and South America. The animal could have not swim across so its the fossil record
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
What are the following statements? If there's one that mention a description of current action, or motion, that's your answer.