De broglie wavelength,
, where h is the Planck's constant, m is the mass and v is the velocity.

Mass of hydrogen atom, 
v = 440 m/s
Substituting
Wavelength 

So the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm
I hope it's not too late, but here you go
Answer:
Net force is Zero.
Explanation:
If all forces that are equal and opposite are exerted on an object the resulting force will be Zero.
The circuit change when the wire is added will see a short circuit occur and makes bulbs 1 and 2 turn off but keeps bulbs 3 and 4 lit. Option D. This is further explained below.
<h3>
How does the circuit change when the wire is added?</h3>
Generally, Electronic circuits consist of a series of interconnected parts that form a closed loop through which electricity may flow.
In conclusion, If two wires are linked together, a short circuit will develop, cutting power to bulbs 1 and 2. But there is no impact on bulbs 3 and 4. There is no problem with bulbs 3 and 4.
Read more about circuit
brainly.com/question/21505732
#SPJ1
Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm