Answer:
the angular acceleration is 9.7 rad/
Explanation:
given information:
mass of thin rod, m = 3.2 kg
the length of the rod, L = 1.2
angle, θ = 38
to find the acceleration of the rod, we can use the torque's formula as below,
τ = Iα
where
τ = torque
I = inertia
σ = acceleration
moment inertia of this rod, I
I =
τ = F d, d =
cosθ
τ = m g
cosθ
now we can substitute the both equation,
τ = Iα
α = τ/I
= (m g
cosθ)/(
)
= 3gcosθ/2L
= 3 (9.8)cos 38°/(2 x 1.2)
= 9.7 rad/
Answer:
heat required in pan B is more than pan A
Explanation:
Heat required to raise the temperature of the substance is given by the formula

now we know that both pan contains same volume of water while the mass of pan is different
So here heat required to raise the temperature of water in Pan A is given as


Now similarly for other pan we have


So here by comparing the two equations we can say that heat required in pan B is more than pan A
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s