We are given with the reaction HCOOH(g) →CO2(g) + H2 (g). According to Dalton's law, the total pressure of a vessel is equal to the sum of the partial pressure of the components inside it. In this case, we plot first the data ln (ratio partial pressure of HCOOH to total pressure) vs time. Partial pressure is the difference of pressure (from one point to another). In this case, the equation is ln P(HCCOH) = -0.0146t - 0.2281 where R² = 0.9923. K is equal to <span> -0.0146 s-1. When the total pressure is 291, ln P is -0.66938, thus the time is 30.23 seconds. The half life is ln(0.5)/k equal to 47.46 seconds.</span>
The answer is accuracy.
That is when a test instrument is calibrated, its accuracy is improved. That is the result comes more close to what it is.
The other factor will not be improved that is its reliability and precision remains the same.
So the answer is accuracy is improved when a test instrument is calibrated.
The Aufbau principle states that, hypothetically, electrons orbiting one or more atoms fill the lowest available energy levels before filling higher levels (e.g., 1s before 2s). In this way, the electrons of an atom, molecule, or ion harmonize into the most stable electron configuration possible.
Answer:
Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a measurement is an estimate of the amount by which the measurement result may differ from this value. Precision of measured values refers to how close the agreement is between repeated measurements.
Explanation:
There are more oxygen atoms in the reactants while there are less oxygen atoms in the product.
Both sides of the equation is supposed to be balanced for a balanced equation. If any one of them isn't balanced, the equation remains unbalanced.
The main reason why the reaction above can not be balanced is:
This chemical reaction SO2 + H2O -> H2SO2 is not correctly written.
It must be: SO2 + H2O -> H2SO3
<em>hope this helps....</em>