Answer:
The Third Law of thermodynamics states that the entropy of a pure substance in a perfect crystalline state at zero temperature is zero.
Answer:
i think it is A
Explanation:
because earthquakes can cause volcanoes
In general chemistry, isotopes are substances that belong to one specific element. So, they all have the same atomic numbers. But they only differ in the mass numbers, or the number of protons and neutrons in the nucleus. In a nutshell, they only differ in the number of neutrons.
For Nickel, there are 5 naturally occurring isotopes. Their identities, masses and relative abundance are listed below
Isotope Abundance Atomic Mass
Ni-58 68.0769% <span>57.9353 amu
Ni-60 </span>26.2231% <span>59.9308 amu
Ni-61 </span>1.1399 % <span>60.9311 amu
Ni-62 </span>3.6345% <span>61.9283 amu
Ni-64 </span>0.9256% <span>63.9280 amu
To determine the average atomic mass of Nickel, the equation would be:
Average atomic mass = </span>∑Abundance×Atomic Mass
Using the equation, the answer would be:
Average atomic mass = 57.9353(68.0769%) + 59.9308(26.2231%) + 60.9311(1.1399%) + 61.9283(3.6345%) + 63.9280(0.9256%)
Average atomic mass = 58.6933 amu
Answer:
4.96E-8 moles of Cu(OH)2
Explanation:
Kps es the constant referring to how much a substance can be dissolved in water. Using Kps, it is possible to know the concentration of weak electrolytes. Then, pKps is the minus logarithm of Kps.
Now, we know that sodium hydroxide (NaOH) is a strong electrolyte, who is completely dissolved in water. Therefore the pH depends only on OH concentration originating from NaOH. Let us to figure out how much is that OH concentration.
![pH= -log[H]\\pH= -log (\frac{kw}{[OH]})](https://tex.z-dn.net/?f=pH%3D%20-log%5BH%5D%5C%5CpH%3D%20-log%20%28%5Cfrac%7Bkw%7D%7B%5BOH%5D%7D%29)
![8.23 = - log(\frac{Kw}{[OH]} \\10^{-8.23} = Kw/[OH]\\ [OH] = Kw/10^{-8.23}](https://tex.z-dn.net/?f=8.23%20%3D%20-%20log%28%5Cfrac%7BKw%7D%7B%5BOH%5D%7D%20%5C%5C10%5E%7B-8.23%7D%20%3D%20Kw%2F%5BOH%5D%5C%5C%20%5BOH%5D%20%3D%20Kw%2F10%5E%7B-8.23%7D)
![[OH]=1.69E-6](https://tex.z-dn.net/?f=%5BOH%5D%3D1.69E-6)
This concentration of OH affects the disociation of Cu(OH)2. Let us see the dissociation reaction:

In the equilibrum, exist a concentration of OH already, that we knew, and it will be added that from dissociation, called "s":
The expression for Kps is:
![Kps= [Cu^{2+}] [OH]^2](https://tex.z-dn.net/?f=Kps%3D%20%5BCu%5E%7B2%2B%7D%5D%20%5BOH%5D%5E2)
The moles of (CuOH)2 soluble are limitated for the concentration of OH present, according to the next equation.

"s" is the soluble quantity of Cu(OH)2.
The solution for this third grade equation is 
Now, let us calculate the moles in 1 L:

The answer to this question I think would be 2: Better