14 pints. You multiply by 2. :-)
The correct question is
The composite figure is made up of a triangular prism and a pyramid. The two solids have congruent bases. What is the volume of the composite figure<span>
?</span>
the complete question in the attached figure
we know that
[volume of a cone]=[area of the base]*h/3
[area of the base]=22*10/2-------> 110 units²
h=19.5 units
[volume of a cone]=[110]*19.5/3------> 715 units³
[volume of a triangular prism]=[area of the base]*h
[area of the base]=110 units²
h=25 units
[volume of a a triangular prism]=[110]*25------------> 2750 units³
[volume of a the composite figure]=[volume of a cone]+[volume of a <span>a triangular prism]
</span>[volume of a the composite figure]=[715]+[2750]-------> 3465 units³
the answer is
The volume of a the composite figure is 3465 units³
C is 2020 bdecuase I want points
Answer:
IT IS YES AND MORE YESES yo tango
Step-by-step explanation:
Answer:
x = y = 22
Step-by-step explanation:
It would help to know your math course. Do you know any calculus? I'll assume not.
Equations
x + y = 44
Max = xy
Solution
y = 44 - x
Max = x (44 - x) Remove the brackets
Max = 44x - x^2 Use the distributive property to take out - 1 on the right.
Max = - (x^2 - 44x ) Complete the square inside the brackets.
Max = - (x^2 - 44x + (44/2)^2 ) + (44 / 2)^2 . You have to understand this step. What you have done is taken 1/2 the x term and squared it. You are trying to complete the square. You must compensate by adding that amount on the end of the equation. You add because of that minus sign outside the brackets. The number inside will be minus when the brackets are removed.
Max = -(x - 22)^2 + 484
The maximum occurs when x = 22. That's because - (x - 22) becomes 0.
If it is not zero it will be minus and that will subtract from 484
x + y = 44
xy = 484
When you solve this, you find that x = y = 22 If you need more detail, let me know.