Answer:
Average speed, As = 2.2 [m/s]
Explanation:
To solve these types of problems we must remember that the average of the speeds is determined by dividing the distance over time.
With the first speed and the time of 6 [s] we can calculate the distance.
V = x/t
where:
x = distance [m]
V = velocity = 1.1 [m/s]
t = time = 6 [s]
x1 = V*t
X1 = 1.1*6
X1 = 6.6 [m]
Now with the second velocity and 6 [s], we can calculate the second distance.
X2 = 3.3*6
X2 = 19.8 [m]
Now we have to calculate the average speed. The total distance is x = x1 +x2
X = 19.8 + 6.6 = 26.4 [m]
and the total time is 12 [s]
Therefore:
As = 26.4/12
As = 2.2 [m/s]
1.47x10^5 Joules
The gravitational potential energy will be the mass of the object, multiplied by the height upon which it can drop, multiplied by the local gravitational acceleration. And since it started at the top of a 60.0 meter hill, halfway will be at 30.0 meters. So
500 kg * 30.0 m * 9.8 m/s^2 = 147000 kg*m^2/s^ = 147000 Joules.
Using scientific notation and 3 significant figures gives 1.47x10^5 Joules.
<span>When reading a buret, the initial reading should be taken from the top of the glassware and the final volume should still taken at the top. If the buret is completely, the initial volume for most buret would be zero. though, there are some where their initial starts at 50 decreasing to zero.</span>
We do not feel the gravitational forces from objects other than the Earth because they are weak.
The other 4 kg of mass may have departed the scene
of the fire, in the form of gases and smoke particles.