The molarity remains the same so the ratio does not change
Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given 
The surface area to volume ratio for right circular cylinder is given 
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.
Answer:
v₂ = 176.24 m/s
Explanation:
given,
angle of projectile = 45°
speed = v₁ = 150 m/s
for second trail
speed = v₂ = ?
angle of projectile = 37°
maximum height attained formula,

now,


now, equating both the equations


v₂² = 31061.79
v₂ = 176.24 m/s
velocity of projectile would be equal to v₂ = 176.24 m/s
Mass of a sample of gas doesn't change, no matter what happens to its pressure, volume, or temperature.