When radio waves try to pass through a city, they encounter thin vertical slits: the separations between the buildings. This cau
ses the radio waves to diffract. In this problem, you will see how different wavelengths diffract as they pass through a city and relate this to reception for radios and cell phones. You will use the angle from the center of the central intensity maximum to the first intensity minimum as a measure of the width of the central maximum (where nearly all of the diffracted energy is found).
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.