Answer:
The total amount of CO₂ produced will be = 20680 kg/year
The reduction in the amount of CO₂ emissions by that household per year = 3102 kg/year
Explanation:
Given:
Power used by household = 14000 kWh
Fuel oil used = 3400 L
CO₂ produced of fuel oil = 3.2 kg/L
CO₂ produced of electricity = 0.70 kg/kWh
Now, the total amount of CO₂ produced will be = (14000 kWh × 0.70 kg/kWh) + (3400 L × 3.2 kg/L)
⇒ The total amount of CO₂ produced will be = 9800 + 10880 = 20680 kg/year
Now,
if the usage of electricity and fuel oil is reduced by 15%, the reduction in the amount of the CO₂ emission will be = 0.15 × 20680 kg/year = 3102 kg/year
Answer:
9.74 x 10^7 m/s
Explanation:
V = 27000 V
energy of electrons = e x V
K = 1.6 x 10^-19 x 27000 = 43200 x 10^-19 J
Energy = 1/2 m v^2
43200 x 10^-19 = 0.5 x 9.1 x 10^-31 x v^2
v^2 = 9.495 x 10^15
v = 9.74 x 10^7 m/s
Answer:
α = 5.75°
Explanation:
In this case, the problem states that both springs have identical lenghts and we also have theri constant. We want to know the angle of the rod with the horizontal. This can be found with the following expression:
sinα = Δx/L
α = sin⁻¹ (Δx/L) (1)
However, we do not have Δx. This can be found when half of the weight of the rod is balanced. In this way:
F₁ = k₁*x₁ ----> x₁ = F₁ / k₁ (2)
And the force is the weight in half so: F₁ = mg/2
Replacing in (2) we have:
x₁ = (1.3 * 9.8) / (2 * 58) = 0.1098 m
Doing the same thing with the other spring, we have:
x₂ = (1.3 * 9.8) / (2 * 36) = 0.1769 m
Now the difference will be Δx:
Δx = 0.1769 - 0.1098 = 0.0671 m
Finally, we can calculate the angle α, from (1):
α = sin⁻¹(0.0671 / 0.67)
<h2>
α = 5.75 °</h2>
Hope this helps
As the artic fox has very small ears it helps prevent the heat from his body from escaping quickly.
The bigger the ears the faster the heat escapes basically.