1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
3 years ago
9

One degree Celsius indicates the same temperature change as

Mathematics
1 answer:
Romashka [77]3 years ago
4 0
D. one kelvin is the answer
You might be interested in
Two non-common sides of adjacent supplementary angles form a _____ angle.
mel-nik [20]

Answer:

C. straight

Step-by-step explanation:

 A Linear Pair is two adjacent angles whose non-common sides form opposite rays.

If two angles form a linear pair, the angles are supplementary.

A linear pair forms a straight angle which contains 180º, so you have 2 angles whose measures add to 180, which means they are supplementary.

In the figure given in attachment, AB and BC are two non common sides of ∠ABD and ∠DBC.

∠1 and ∠2 form a linear pair.

The line through points A, B and C is a straight line.

∠1 and ∠2 are supplementary.

Thus two non-common sides of adjacent supplementary angles form a <u>straight</u> angle.

8 0
2 years ago
Apply the method of undetermined coefficients to find a particular solution to the following system.wing system.
jarptica [38.1K]
  • y''-y'+y=\sin x

The corresponding homogeneous ODE has characteristic equation r^2-r+1=0 with roots at r=\dfrac{1\pm\sqrt3}2, thus admitting the characteristic solution

y_c=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x

For the particular solution, assume one of the form

y_p=a\sin x+b\cos x

{y_p}'=a\cos x-b\sin x

{y_p}''=-a\sin x-b\cos x

Substituting into the ODE gives

(-a\sin x-b\cos x)-(a\cos x-b\sin x)+(a\sin x+b\cos x)=\sin x

-b\cos x+a\sin x=\sin x

\implies a=1,b=0

Then the general solution to this ODE is

\boxed{y(x)=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x+\sin x}

  • y''-3y'+2y=e^x\sin x

\implies r^2-3r+2=(r-1)(r-2)=0\implies r=1,r=2

\implies y_c=C_1e^x+C_2e^{2x}

Assume a solution of the form

y_p=e^x(a\sin x+b\cos x)

{y_p}'=e^x((a+b)\cos x+(a-b)\sin x)

{y_p}''=2e^x(a\cos x-b\sin x)

Substituting into the ODE gives

2e^x(a\cos x-b\sin x)-3e^x((a+b)\cos x+(a-b)\sin x)+2e^x(a\sin x+b\cos x)=e^x\sin x

-e^x((a+b)\cos x+(a-b)\sin x)=e^x\sin x

\implies\begin{cases}-a-b=0\\-a+b=1\end{cases}\implies a=-\dfrac12,b=\dfrac12

so the solution is

\boxed{y(x)=C_1e^x+C_2e^{2x}-\dfrac{e^x}2(\sin x-\cos x)}

  • y''+y=x\cos(2x)

r^2+1=0\implies r=\pm i

\implies y_c=C_1\cos x+C_2\sin x

Assume a solution of the form

y_p=(ax+b)\cos(2x)+(cx+d)\sin(2x)

{y_p}''=-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x)

Substituting into the ODE gives

(-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x))+((ax+b)\cos(2x)+(cx+d)\sin(2x))=x\cos(2x)

-(3ax+3b-4c)\cos(2x)-(3cx+3d+4a)\sin(2x)=x\cos(2x)

\implies\begin{cases}-3a=1\\-3b+4c=0\\-3c=0\\-4a-3d=0\end{cases}\implies a=-\dfrac13,b=c=0,d=\dfrac49

so the solution is

\boxed{y(x)=C_1\cos x+C_2\sin x-\dfrac13x\cos(2x)+\dfrac49\sin(2x)}

7 0
3 years ago
Please help I don't understand what to do
harina [27]

Answer:

This is an a fake answer but I want to supposed to be multiple pictures?? Because you said add an explanation for each picture and is this history? Are you sure it’s math

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Ana escribe conjuntos de cinco enteros positivos consecutivos con la siguiente propiedad: La suma de tres de los números es tan
Keith_Richards [23]

Answer:

a) 1.

Step-by-step explanation:

Supongamos que el primer número entero positivo es a tal que a ∈ Z⁺.

Luego, el conjunto de los cinco enteros positivos se puede expresar como

A = {a; a+1; a+2; a+3; a+4}

Dada la condición del problema, se debe cumplir que

a + (a+1) + (a+2) = (a+3) + (a+4)

⇒  3a + 3 = 2a + 7

Resolviendo la ecuación resulta

a = 4

Luego, el conjunto A nos resulta

A = {4; 5; 6; 7; 8}

Puede concluirse que sólo un conjunto cumple con esta condición.

5 0
2 years ago
How do change 0.9 in fraction
Fantom [35]
0.9 as a fraction is: \frac{9}{10}

What place is the '9' in? It's in the tenth place.
0.9 can be said as nine \ tenths

Nine(9) tenths(10) = \frac{9}{10}
3 0
3 years ago
Read 2 more answers
Other questions:
  • Which passage from the Constitution describes the First Amendment right of
    8·1 answer
  • Tim bought 7 new baseball trading cards to add to his collection. The next day his dog ate half of his collection. There are now
    15·2 answers
  • PLEASE ANSWER RIGHT FOR BRAINLIEST. AND NO THIS IS NOT A TEST ITS A PRACTICE.
    6·1 answer
  • How do you find 7% of 86,000
    15·2 answers
  • How many solutions does the equation 4x + 2(x - 5) = 3(2x - 4) have?
    8·1 answer
  • Order the following numbers from least to greatest...
    15·1 answer
  • This table shows some values of an exponential function. x у 01.25 1 2.50 25 3 10 What is the function?​
    13·1 answer
  • 2(x-4) = 5 (x+24) rewrite the equation in slope-intercept form
    11·1 answer
  • A house was originally listed for sale at $250,00. After 3 months, the seller dropped the price to $235,000. What percent of dec
    6·1 answer
  • Solve pls branliest.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!