1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
4 years ago
7

Twelve education students, in groups of four, are taking part in a student-teacher program. Mark cannot be in the first group be

cause he will be arriving late.
How many ways can the instructor choose the first group of four education students?
220
330
1,980
7,920
Mathematics
2 answers:
aliya0001 [1]4 years ago
7 0
The answer is 330. Or answer B
Sati [7]4 years ago
7 0

yeah this is right its "B"

You might be interested in
25+18 divided by 6-1
forsale [732]
40R3 it 40r3the answer is
8 0
3 years ago
Read 2 more answers
The income elasticity of the demand coefficient is for normal goods. Choose one:A. equal to zeroB. less than zero C. greater tha
katovenus [111]

Answer:

D. sometimes less than zero and sometimes greater than zero.

Step-by-step explanation:

The income elasticity of demand is the responsiveness of the increase in the consumers income versus the quantity of goods and services demanded in an economy. we have five types of income elasticity of demand which are namely high elasticity, unitary elasticity, low elasticity and negative elasticity.

in high elasticity of demand when income rises then we see a much bigger increase in the quantity of goods and services demanded therefore positive coefficient.

The unitary elasticity of demand is when the income increases at the same rate the quantity of goods and services demanded rises therefore a coefficient is constant.

the low elasticity of demand is when income increases at a lower rate than the increase in the quantity demanded. positive but low coefficient.

The negative elasticity of demand is when an income increases and the quantity decreases therefore a negative coefficient is seen.

4 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Hi, this is apart of my homework assignment!
Hunter-Best [27]

Answer:

Percent Change is 16%

The change is increased.

Step-by-step explanation:

The original amount = 25

Amount increase = 4

We need to find percent increase

The formula used is: \frac{Amount \ increased}{Original \ Amount}*100

Putting values in formula

Percent \ Change = \frac{Amount \ increased}{Original \ Amount}*100\\Percent \ Change =\frac{4}{25}*100\\Percent \ Change =16 \%

So, Percent Change is 16%

The change is increased.

5 0
3 years ago
A private club grew by 7 members each week for 63 weeks. What was the total change in the club's size? members​
ikadub [295]

Answer:

The answer is 441

Step-by-step explanation:

7 x 63 = 441

5 0
3 years ago
Other questions:
  • What is the scale if 3 cm on the map correspond to 120 km in the actual distance
    14·2 answers
  • Factorise y squared -9w squared
    6·1 answer
  • Plz do not delete my questions. I will give you 20 points for these two questions. A thanks. And a 5 star rate. But in order for
    10·2 answers
  • Question #8
    6·1 answer
  • Scott had 3 equal stacks of baseball cards. He gave one stack to his brother Shawn.
    11·2 answers
  • What is the standard deviation of the following data? If necessary, round your answer to two decimal places.
    8·1 answer
  • Let f(x)+x^2+3x+2<br> What is the average rate of change of f(x) from 3 to 6?
    12·1 answer
  • Can someone help me please ☺
    7·1 answer
  • Cami and Enrique's ages add up to 46. Cami is two years older than three times Enrique's age. How old are Cami and Enrique?
    15·1 answer
  • Lauren purchased 14 tops she returned for 4/7 of them how many tops did she end up keeping?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!