<h3><u>Answer;</u></h3>
A gas in a liquid
<h3><u>Explanation;</u></h3>
- Pressure affects the solubility of gases. According to Henry's law, the solubility of a gas in a liquid is proportional to the partial pressure of the gas above the liquid at a given temperature,
- Therefore; For the solubility of gases in liquids, as pressure increases, solubility increases. Hence pressure will have a effect on a solution with a gas in liquid.
Answer:
8.9 mg/l
Explanation: Temp doesnt matter so throw that out automatically then your equation is;
S1/P1=S2/P2
We are looking for S2 and that equation is;
S2=S1*P2/P1 and that is S2=22.25*1/2.5
A little bit of simple math and you get your answer: 8.9 mg/l
Answer:

Explanation:
First you should calculate the volume of a big sphere,so:



Then you calculate the volume of a small spehre, so:



Finally you subtract the two quantities:


Answer:
Hydrogen
Explanation:
Just to provide some background, an element is a pure substance consisting of only one type of atom. An atom is the smallest constituent of matter. All elements are comprised of a single type of atom (e.g., gold is composed of gold atoms, helium of helium atoms, phosphorus phosphorus, and so on).
A molecule is a group of two or more atoms. They can be the same atom (homonuclear), such as or different atoms (heteronuclear).
Some examples of homonuclear molecules include:
Hydrogen (H2)
Nitrogen (N2)
Phosphorus (P4)
Some examples of heteronuclear molecules include:
Carbon dioxide (CO2)
Sulfuric acid (H2SO4)
Methane (CH4)
Answer:
Sry i am unable to see the attached picture but i hope this helps
Explanation:
There are a couple of ways to prepare a buffer solution of a specific pH. In the first method, prepare a solution with an acid and its conjugate base by dissolving the acid form of the buffer in about 60% of the volume of water required to obtain the final solution volume