Step-by-step explanation:
Taking value of x= 4
16. 4 + 8 = <u>12</u>
17. 24 ÷ 4 = <u>6</u>
18. 3(4+4) = 3 × 8 = <u>24</u>
19. 5 × 4 = <u>20</u>
20. 30 - (5 × 4) = 30 - 20 = <u>10</u>
21.( 2 × 4 )+ 5 = 8 + 5 = <u>13</u>
22. 4 + 1 = <u>5</u>
23. 25 × 4 = <u>100</u>
24. 60 × 4 = <u>240</u>
25. (25×4) + 10 = 100 + 10 = <u>110</u>
Prove that if m + n and n + p are even integers, where m, n, and p are integers, then m + p is even.
m=2k-n, p=2l-n
Let m+n and n+p be even integers, thus m+n=2k and n+p=2l by definition of even
m+p= 2k-n + 2l-n substitution
= 2k+2l-2n
=2 (k+l-n)
=2x, where x=k+l-n ∈Z (integers)
Hence, m+p is even by direct proof.
Multiplying 34x 17 and you will get answer