Answer:
The student's GPA is of 0.82.
Step-by-step explanation:
GPA:
To find the student's GPA, we find his weighed mean.
Grades:
7 hours worth 3(B)
6 hours worth 1(D)
20 hours worth 0(F). So

The student's GPA is of 0.82.
Answer
Let t be number of minutes since tap is opened
water is increased by 20 gallons of water per minute.
sugar increase rate of 3 pounds per minute
water :- W(t) = 350 + 10 t
sugar :- S(t) = 10 + 3 t
concentration
C(t) = 
at t = 15 minutes
C(15) = 
C(15) = 
C(15) = 0.11
at beginning t = 0 minutes
C(0) = 
C(0) = 
C(0) = 0.0286
C(15) > C(0)
hence, concentration is increasing as time is passing.
b (?) and c
m and n have the same slope (-2/5) so m//n
15/3x5+4x8=40
1)15/3x9x8=40
2)15/27x8=40
3)15/216=40
4)14.4=40
Using the binomial distribution, it is found that the probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
For each person, there are only two possible outcomes, either they need correction for their eyesight, or they do not. The probability of a person needing correction is independent of any other person, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- A survey showed that 77% of us need correction, hence p = 0.77.
- 13 adults are randomly selected, hence n = 13.
The probability that at least 12 of them need correction for their eyesight is given by:

In which:



Then:

The probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
More can be learned about the binomial distribution at brainly.com/question/24863377