1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
10

A long, hollow, cylindrical conductor (inner radius 3.4 mm, outer radius 7.3 mm) carries a current of 36 A distributed uniformly

across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 52 A in the opposite direction. What is the magnitude of the magnetic field (a) 1.1 mm, (b) 3.6 mm, and (c) 7.4 mm from the central axis of the wire and cylinder?

Physics
1 answer:
Elden [556K]3 years ago
3 0

Answer:

a. B= 9.45 \times10^{-3} T

b. B= 0.820 T

c. B= 0.0584 T

Explanation:

First, look at the picture to understand the problem before to solve it.

a. d1 = 1.1 mm

Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:

To solve the equations we have to convert all units to those of the international system. (mm→m)

B=\frac{u_{0}I_{w}}{2\pi d_{1}} =\frac{52 \times4\pi \times10^{-7} }{2\pi 1.1 \times 10^{-3}} =9.45 \times10^{-3} T\\

μ0 is the constant of proportionality

μ0=4πX10^-7 N*s2/c^2

b. d2=3.6 mm

Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:

J: current density

c: outer radius

b: inner radius

The cilinder's current is negative, as it goes on opposite direction than the wire's current.

J= \frac {-I_{c}}{\pi(c^{2}-b^{2}  ) }}

J=\frac{-36}{\pi(5.33\times10^{-5}-1.16\times10^{-5}) } =-274.80\times10^{3} A/m^{2}

B=\frac{u_{0}(I_{w}-JA_{s})}{2\pi d_{2} } \\A_{s}=\pi (d_{2}^{2}-b^2)=4.40\times10^{-6} m^2\\

B=\frac{6.68\times10^{-5}}{8.14\times10^{-5}} =0.820 T

c. d3=7.4 mm

Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

B=\frac{u_{0}(I_w-I_c)}{2\pi d_3 } =\frac{2.011\times10^-5}{3.441\times10^{-4}} =0.0584 T

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.

You might be interested in
If the Sun suddenly went dark, we would not know it until its light stopped arriving on Earth. How long would that be, in second
Gre4nikov [31]

Answer: 500 s

Explanation:

Speed v is defined as a relation between the distance d and time t:

v=\frac{d}{t}

Where:

v=3(10)^{8}m/s is the speed of light in vacuum

d=1.5(10)^{11}m is the distance between the Earth and Sun

t is the time it takes to the light to travel the distance d

Isolating t:

t=\frac{d}{v}

t=\frac{1.5(10)^{11}m}{3(10)^{8}m/s}

Finally:

t=500 s

5 0
3 years ago
Please help and check all that apply and I will mark brainliest if it’s correct
Yuri [45]
A syncline is visable
3 0
3 years ago
What is the resistance of a voltage of 65 V and a current of 2.2 A? Include units.
kozerog [31]

Answer:

29.5 ohms

Explanation:

R= V/I

= 65 / 2.2

= 29.5 ohms

4 0
3 years ago
A speed boat moving at a velocity of 25 m/s runs out of gas and drifts to a stop 3 minutes later 100 meters away. What is its ra
mr_godi [17]
<h2>Answer:</h2>

The rate of deceleration is -0.14m/s^{2}

<h2>Explanation:</h2>

Using one of the equations of motion;

v = u + at

where;

v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)

u = initial velocity of the boat = 25m/s

a = acceleration of the boat

t = time taken for the boat to accelerate/decelerate from u to v =   3 minutes

<em>Convert the time t = 3 minutes to seconds;</em>

=> 3 minutes = 3 x 60 seconds = 180seconds.

<em>Substitute the values of v, u, t into the equation above. We have;</em>

v =  u + at

=> 0 = 25 + a(180)

=> 0 = 25 + 180a

<em>Make a the subject of the formula;</em>

=> 180a = 0 - 25

=> 180a = -25

=> a = -25/180

=> a = -0.14m/s^{2}

The negative value of a shows that the boat is decelerating.

Therefore, the rate of deceleration of the speed boat is 0.14m/s^{2}

5 0
3 years ago
The gamma ray released by each decay carries 140kev of energy. find the total energy e released by decays in the 2 hours.
olya-2409 [2.1K]
First, we would need to know the decaying isotope.
Next, we use the decay formula
A = Ao e^(-kt)
After determining the remaining amount after two hours, the decay reaction can be used to determine the number of gamma rays released. If the given is in terms of mole, then the total energy is
E = 140n KeV where n is the number of moles of gamma rays released
8 0
3 years ago
Read 2 more answers
Other questions:
  • Steven carefully places a m = 1.85 kg wooden block on a frictionless ramp so that the block begins to slide down the ramp from r
    10·1 answer
  • In which scenario does radiation occur?
    15·2 answers
  • I have this sheet and I don’t understand any of it at all
    10·1 answer
  • An accelerating voltage of 2.25 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizont
    9·1 answer
  • dopasuj wartości pracy z ramki do przedstawionych sytuacji a następnie wyraź tę pracę w dżulach uwaga jedna wartość pracy nie bę
    15·2 answers
  • Calculate the speed for a car that went a distance of 125 miles in
    7·1 answer
  • A student determines that a sample has a mass of 157.2 g and a volume of 20 cm^3. Which
    15·1 answer
  • HURYY PLEASE
    12·2 answers
  • Help me plzzzzz<br> Will give Brainlyest
    11·1 answer
  • According to the law of conservation of energy, which statement must be true?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!