1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
10

A long, hollow, cylindrical conductor (inner radius 3.4 mm, outer radius 7.3 mm) carries a current of 36 A distributed uniformly

across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 52 A in the opposite direction. What is the magnitude of the magnetic field (a) 1.1 mm, (b) 3.6 mm, and (c) 7.4 mm from the central axis of the wire and cylinder?

Physics
1 answer:
Elden [556K]3 years ago
3 0

Answer:

a. B= 9.45 \times10^{-3} T

b. B= 0.820 T

c. B= 0.0584 T

Explanation:

First, look at the picture to understand the problem before to solve it.

a. d1 = 1.1 mm

Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:

To solve the equations we have to convert all units to those of the international system. (mm→m)

B=\frac{u_{0}I_{w}}{2\pi d_{1}} =\frac{52 \times4\pi \times10^{-7} }{2\pi 1.1 \times 10^{-3}} =9.45 \times10^{-3} T\\

μ0 is the constant of proportionality

μ0=4πX10^-7 N*s2/c^2

b. d2=3.6 mm

Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:

J: current density

c: outer radius

b: inner radius

The cilinder's current is negative, as it goes on opposite direction than the wire's current.

J= \frac {-I_{c}}{\pi(c^{2}-b^{2}  ) }}

J=\frac{-36}{\pi(5.33\times10^{-5}-1.16\times10^{-5}) } =-274.80\times10^{3} A/m^{2}

B=\frac{u_{0}(I_{w}-JA_{s})}{2\pi d_{2} } \\A_{s}=\pi (d_{2}^{2}-b^2)=4.40\times10^{-6} m^2\\

B=\frac{6.68\times10^{-5}}{8.14\times10^{-5}} =0.820 T

c. d3=7.4 mm

Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

B=\frac{u_{0}(I_w-I_c)}{2\pi d_3 } =\frac{2.011\times10^-5}{3.441\times10^{-4}} =0.0584 T

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.

You might be interested in
Find Vxl and Vyl of a pumpkin launched at a velocity of 55 m/s at an angle of 20 degrees
Vinvika [58]

Answer:

             

Explanation:

is  A projectile is any object on which the only force acting is gravity and air resistance (drag).

Examples of projectiles are:

baseballs and softballs in the air after being hit by the bat

golf balls hit by a club

objects dropped from aircraft, such as people (skydivers), bombs, crates of food being dropped to refugees

objects launched by cannons, such as cannonballs, shells, and circus performers

Once the baseball, softball, golf ball, skydiver, bomb, crate, cannonball, shell, or clown are no longer touching the bat, club, aircraft, or cannon, and are in the air with only gravity and slight air resistance acting on it, then it is a projectile.

Here is an online projectile motion applets to play with, just for fun.

Unless otherwise stated in a particular problem or discussion, we will be ignoring the effects of air resistance.

The key to understanding the motion of projectiles is that the horizontal motion and the vertical motion of the projectile are independent of each other. So we can write separate equations for the displacement of the projectile in the horizontal (x) and vertical (y) directions.

                         

The only common variable between these two equations is t, the time. Because in projectile problems there is usually no acceleration (i.e. we ignore air resistance) in the horizontal direction, we can write

           

The velocity components follow the same equations we used for one-dimensional motion.

                             

Because there is usually no acceleration in the x direction, the x-velocity is constant.

3 0
3 years ago
What name is used for scientists who study the weather in an area over a long time, such as 200 years? Hydrologists weather repo
andrew11 [14]

Answer:

I think it is meteorologist because they also study of the atmosphere, atmospheric phenomena, and atmospheric effects on our weather.

4 0
3 years ago
A beam of electrons moving in the x-direction enters a region where a uniform 208-G magnetic field points in the y-direction. Th
GREYUIT [131]

Answer:

1.26\cdot 10^7 m/s

Explanation:

When a charged particle moves perpendicularly to a magnetic field, the force it experiences is:

F=qvB

where

q is the charge

v is its velocity

B is the strength of the magnetic field

Moreover, the force acts in a direction perpendicular to the motion of the charge, so it acts as a centripetal force; therefore we can write:

qvB=m\frac{v^2}{r}

where

m is the mass of the particle

r is the radius of the orbit of the particle

The equation can be re-arranges as

v=\frac{qBr}{m}

where in this problem we have:

q=1.6\cdot 10^{-19}C is the magnitude of the charge of the electron

B=208 G=208\cdot 10^{-4}T is the strength of the magnetic field

The beam penetrates 3.45 mm into the field region: therefore, this is the radius of the orbit,

r=3.45 mm = 3.45\cdot 10^{-3} m

m=9.11\cdot 10^{-31} kg is the mass of the electron

So, the electron's speed is

v=\frac{(1.6\cdot 10^{-19})(208\cdot 10^{-4})(3.45\cdot 10^{-3})}{9.11\cdot 10^{-31}}=1.26\cdot 10^7 m/s

6 0
3 years ago
The strength of the electric field of a charged particle becomes greater as the distance from the particle increases. T F
natali 33 [55]
The answer is T it is true
7 0
3 years ago
5. a stone propelled from a catapult with a speed of 50 m/s attains a height of 100m. Calculate
omeli [17]

Answer:

<h3>The answer is 2 s</h3>

Explanation:

The time of flight can be found by using the formula

t =  \frac{d}{v}  \\

d is the distance covered

v is the velocity

From the question we have

t =  \frac{100}{50}  =  \frac{10}{5}  \\

We have the final answer as

<h3>2 s</h3>

Hope this helps you

8 0
3 years ago
Other questions:
  • Write a balanced chemical equation for the decomposition of solid sodium sulfide in aqueous solution. A) Na2S(s) → Na+(aq) + S(s
    14·2 answers
  • How does nuclear energy work? Explain
    15·1 answer
  • What is the threshold velocity vthreshold(water) (i.e., the minimum velocity) for creating Cherenkov light from a charged partic
    9·1 answer
  • Vectors and have scalar product -9.00 and their vector product has magnitude 7.00.
    8·1 answer
  • What happens to the velocity of a sound wave in air if the temperature of the air increases?
    13·2 answers
  • A 328-kg car moving at 19.1 m/s in the x direction hits from behind a second car moving at 13.0 m/s in the same direction. If th
    15·1 answer
  • What are the two main processes carried out by the excretory system?​
    6·1 answer
  • What do atoms of elements in a group have that makes their properties similar? A. the same atomic mass
    9·1 answer
  • Can someone help me with this? (The answer marked in red text is a incorrect answer)
    8·1 answer
  • An object has a mass of 10.2 kg, what is its weight in Newton's?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!