1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
10

A long, hollow, cylindrical conductor (inner radius 3.4 mm, outer radius 7.3 mm) carries a current of 36 A distributed uniformly

across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 52 A in the opposite direction. What is the magnitude of the magnetic field (a) 1.1 mm, (b) 3.6 mm, and (c) 7.4 mm from the central axis of the wire and cylinder?

Physics
1 answer:
Elden [556K]3 years ago
3 0

Answer:

a. B= 9.45 \times10^{-3} T

b. B= 0.820 T

c. B= 0.0584 T

Explanation:

First, look at the picture to understand the problem before to solve it.

a. d1 = 1.1 mm

Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:

To solve the equations we have to convert all units to those of the international system. (mm→m)

B=\frac{u_{0}I_{w}}{2\pi d_{1}} =\frac{52 \times4\pi \times10^{-7} }{2\pi 1.1 \times 10^{-3}} =9.45 \times10^{-3} T\\

μ0 is the constant of proportionality

μ0=4πX10^-7 N*s2/c^2

b. d2=3.6 mm

Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:

J: current density

c: outer radius

b: inner radius

The cilinder's current is negative, as it goes on opposite direction than the wire's current.

J= \frac {-I_{c}}{\pi(c^{2}-b^{2}  ) }}

J=\frac{-36}{\pi(5.33\times10^{-5}-1.16\times10^{-5}) } =-274.80\times10^{3} A/m^{2}

B=\frac{u_{0}(I_{w}-JA_{s})}{2\pi d_{2} } \\A_{s}=\pi (d_{2}^{2}-b^2)=4.40\times10^{-6} m^2\\

B=\frac{6.68\times10^{-5}}{8.14\times10^{-5}} =0.820 T

c. d3=7.4 mm

Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

B=\frac{u_{0}(I_w-I_c)}{2\pi d_3 } =\frac{2.011\times10^-5}{3.441\times10^{-4}} =0.0584 T

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.

You might be interested in
A shaving or makeup mirror is designed to magnify your face by a factor of 1.40 when your face is placed 20.0cm in front of it
Dennis_Churaev [7]

Answer:

(a) convex mirror

(b) virtual and magnified

(c) 23.3 cm

Explanation:

The having mirror is convex mirror.

distance of object, u = - 20 cm

magnification, m = 1.4

(a) As the image is magnified and virtual , so the mirror is convex in nature.

(b) The image is virtual and magnified.

(c) Let the distance of image is v.

Use the formula of magnification.

m =-\frac{v}{u}\\1.4=-\frac{v}{-20}\\v =28 cm

Use the mirror equation, let the focal length is f.

\frac{1}{f}=\frac{1}{v}+\frac{1}{u}\\\frac{1}{f}=\frac{1}{28}+\frac{1}{20}\\\frac{1}{f}=\frac{28+20}{560}\\f=11.67cm

Radius of curvature, R = 2 f = 2 x 11.67 = 23.3 cm

5 0
3 years ago
Which formula is used to find an object's acceleration?
irga5000 [103]
Acceleration= change in velocity/time
8 0
2 years ago
Read 2 more answers
The unit for measuring the rate at which light energy is radiated from a source is the
zzz [600]
The correct answer is letter D. candela. The unit for measuring the rate at which light energy is radiated from a source is the candela. L<span>umen is the unit for measuring the total amount of visible light emitted by a source. Lux is lumen per square meter. </span>
5 0
3 years ago
Can someone help me?
Alik [6]

Answer:

Resultant = 3.05N

Explanation:

r =  \sqrt{{5}^{2} + 5^{2} - 2(5)(5) \cos(120) }

r =  \sqrt{25 + 25 - 50(0.8142)}

r =  \sqrt{50 - 40.71}  =  \sqrt{9.29}

r = 3.05

6 0
2 years ago
What are 16 stages of a stars life
Alla [95]
Https://www.slideshare.net/mobile/jan_parker/life-cycle-of-stars-3196871
the answer to your question!
8 0
3 years ago
Other questions:
  • The carpal bones in the hands are an example of __________.
    9·2 answers
  • A feather of mass 0.001 kg falls from a height of 2 m under realistic conditions it experiences air resistance based on what you
    9·2 answers
  • Which best defines transparent and provides an example of a material that is transparent to light?
    11·1 answer
  • 1) An object with a height of 36 cm is placed 2.1 m in front of a concave mirror with a focal length of 0.50 m. a) Determine the
    13·1 answer
  • Parallax error occurs when the observer records data when he/she is at an angle to the event he/she is observing. Where do you t
    13·1 answer
  • The momentum of blue whale with a mass of 146,000 kg and a top swimming speed of 24 km/hr is kg·m/s.
    14·1 answer
  • When you look at green dots with a red filter what color did you see?
    13·1 answer
  • On a roller coaster, riders can experience a force of up to 4 g. What is the maximum acceleration of the roller coaster?
    5·1 answer
  • Below is a metabolic pathway having 3 chemical reactions and 3 enzymes. Enzyme 1 has 2 binding sites--1 for the substrate A and
    9·1 answer
  • Create a ray diagram for eyeglasses that contain a diverging lens. Assume you are looking at a 2 cm tall object that is 4 cm fro
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!