Answer:
4.24m/s
Explanation:
Potential energy at the top= kinetic energy at the button
But kinetic energy= sum of linear and rotational kinetic energy of the hoop
PE= mgh
KE= 1/2 mv^2
RE= 1/2 I ω^2
Where
m= mass of the hoop
v= linear velocity
g= acceleration due to gravity
h= height
I= moment of inertia
ω= angular velocity of the hoop.
But
I = m r^2 for hoop and ω = v/r
giving
m g h = 1/2 m v^2 + 1/2 (m r^2) (v^2/r^2) = 1/2 m v^2 + 1/2 m v^2 = m v^2
and m's cancel
g h = v^2
Hence
v= √gh
v= √10×1.8
v= 4.24m/s
The amplitude of the wave is the 'full height of the wave.' Amplitude is measured in m (meters) and is measured over the change of a single period.
<span>Acceleration is the rate of
change of the velocity of an object that is moving. This value is a result of
all the forces that is acting on an object which is described by Newton's
second law of motion. Calculations of such is straightforward, if we are given
the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:
d = v0t + at^2/2
We cancel the term with v0 since it is initially at rest,
d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2
</span>
<u>Note that</u>:
The gravitational potential energy = 
where m: is the mass, g: the acceleration due to the gravity and h is the height from the earth surface
Then, we can increase the gravitational potential energy by increasing the mass or the height from the earth surface
<u>In our question</u>, we can increase the gravitational potential energy by
<u>A) Strap a boulder to the car so that it wights more.</u>
<span>speed = wavelength x frequency
speed = 0.4m X 10 Hz
speed = 4 m/s</span>