Answer:
1/2
Step-by-step explanation:
remember that the formula for the slope of a line is

where m is the slope, and the x and y variables are the x-y coordinates of two points. Choose two points on the line:
Point 1 : (-1,3) and Point 2 : (1,4)
Plug in your values:


So the slope of this line is 1/2 !
The length of the rectangle would be 21
Proportion to set it up would be 7/3 x X/9 cross multiply and solve for x which is 21
It's an irrational number which means the number never ends and has no pattern in its decimal. So you would round it:
9/6.5= 1.384615384615385
but the answer would be 1.384
Answer:
1) you're going to have to flip the coins (or fake numbers) for the experimental trials.
2) for the theoretical, there is 1/2 chance for heads or tails with each toss, so you'd expect that out of 10 tosses, 5 heads, 5 tails. out of 100 tosses- 50 heads, 50 tails.
When tossing 2 coins- 1/2×1/2 = 1/4 (25%) chance that 2 heads, 2 tails, or 1 heads & 1 tails. Deviation value comes from after you done your flipping and recorded your data. So if on 100 flips you actually got 50 and 50 (rarely us that exact ;), the deviation from the expected of 50/50 would be 0.00. If however you flipped 100 heads or 100 tails (impossible), then the deviation value would be 1.00.
|(100-50)| ÷ 50 = 50÷50 = 1.00
So usually you may have data like: 47/53 or something a little off than 50/50, making deviation |(47-50)| ÷ 50 = 3÷50 = 0.06.
Now the number of flips is important for the outcome! So if a coin toss if 10 times had 4 heads, 6 tails, the deviation value would be:
|(4-5)| ÷ 5 = 1÷5 = 0.20
So increasing the # flips DECREASES the deviation value!!
Whether it's from 10 to 100, or from 100 to 200. Look at my example of how the 10-flip deviation of 0.20 decreased to 0.06 with 100-flip