b and e are the largest and equal in magnitude. 
A and d are next. aR = (3rad/s2)R = 3R
c is zero. wR = v = 0; Angular acceleration is zero.
<h3>What is angular acceleration?</h3>
- The temporal rate at which angular velocity changes is known as angular acceleration. The standard unit of measurement is radians per second per second. Therefore, = d d t. Rotational acceleration is another name for angular acceleration.
- Angular velocity divided by acceleration time can be used to define angular acceleration. (t). As an alternative, use pi times the drive speed (n) divided by the acceleration time (t) times 30. Radians per second squared (Rad/sec2) is the standard SI unit for rotational acceleration resulting from this equation.
- To calculate angular velocity, we can use one of three formulas. The definition itself provides the first. Theta = position angle, t = time, and w = angular velocity, where w = angular velocity, theta = position angle, and t = time. Angular velocity is the rate of change of an object's position angle with respect to time.
- The symbol for angular acceleration is, and it is measured in rad/s2, or radians per second square.
If two items are equal, show them as equal in your ranking. If a quantity is equal to zero, show that fact in your ranking:
b and e are the largest and equal in magnitude. 
A and d are next. aR = (3rad/s2)R = 3R
c is zero. wR = v = 0; Angular acceleration is zero.
To learn more about angular acceleration, refer to:
brainly.com/question/20912191
#SPJ4
Answer:
Gravity: downwards
Air drag and air-pressure on the inner surface of the the parachute: Upwards
Explanation:
- If a sky-diver is in the final stages of his descend with open parachute such that the wind is calm and it does not blows him laterally.
- In such a condition the air resistance in the form of drag and the pressure force due to the air captured in the parachute are acting in the upward direction which balance the force of gravity on the body. But this situation may occur momentarily and then again the diver must begin to slowly descend.
Answer:
Plankton is the correct answer I think
Answer:
-3802 m/s
Explanation:
The y-component of the final velocity is ...
(6598 m/s)·sin(-20.5°) ≈ -2310.7 m/s
The y-component of the velocity due to acceleration is ...
(5200 m/s²)(0.350 s)sin(55°) ≈ 1490.9 m/s
Then the initial velocity in the y-direction is found from ...
initial velocity + change in velocity = final velocity
initial velocity = (final velocity) - (change in velocity)
= -2310.7 m/s - 1490.9 m/s ≈ -3802 m/s