Answer:
Acceleration (a) = 40 m/s²
Explanation:
Given:
Initial velocity (u) = 6 m/s
Final velocity (v) = 4.4 m/s
Time taken (t) = 0.04sec
Find:
Acceleration (a) = ?
Computation:
We know that,
⇒ v = u + at
⇒ a = (v - u) / t
⇒ Acceleration (a) = (4.4 - 6) / 0.04
⇒ Acceleration (a) = (-1.6) / 0.04
Acceleration (a) = 40 m/s²
A good way for me to remember things is to study it, and to write it down! Say you want the formula for speed, I would write the formula multiple times on a piece of paper!
Here's a video that I haven't actually watched, I just looked it up! It might help you out though: <span>https://www.youtube.com/watch?v=-Wqrw4G79Kc</span>
Answer:
D. −F
Explanation:
the rest of the answers are
2/3F
The force is represented as a positive quantity and is repulsive.
Electrostatic force is inversely proportional to the square of the distance.
The direction of the force changes, and the magnitude of the force quadruples.
hope this helps sorry if i was too late! :)
Answer:
1) W = 150 J
Explanation:
Work (W) is defined as the product of force F by the distance (d)the body travels due to this force.
W= F*d Formula ( 1)
The work is positive (W+) if the force has the same direction of movement of the object.
The work is negative (W-) if the force has the opposite direction of the movement of the object.
The component of the force that performs work must be parallel to the displacement.
Work done to lift the floor box to its final position
We apply the formula (1)
W= F*d
W = (100 N)*(1.5 m)
W = 150 J
Answer:
The wavelength range is always used to know the probable material present
Explanation:
The wavelength variation from with the concentration shows the type of material in as much the Spectrometer is well initialized before running the sample. The peaks interval may have effect on band gap.