Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
Answer:
an electromagnetic wave with a wavelength in the range 0.001–0.3 m, shorter than that of a normal radio wave but longer than those of infrared radiation. Microwaves are used in radar, in communications, and for heating in microwave ovens and in various industrial processes.
Where are the statements at ?
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change.
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
<span>Tachyons are studied in an area called particle physics, and I must say this is a bit out of my league, but I'll give you some general thoughts. Tachyons are hypothetical particles resulting from what physicists call a thought experiment. Back in the 1960s, some physicists wondered what would happen if matter could travel faster than the speed of light, something that is supposed to be impossible according to the Theory of Relativity. So these particles may or may not exist because they have not been proven or disproven by real experiment as of yet. What people have done is apply existing formulas to the unique properties of tachyons (like imaginary mass!). What comes out is a particles that go faster when they lose energy with a MINIMUM velocity of the speed of light and a maximum velocity of infinity! Hope that helps Ben, theoretical physics is a weird place and is not too far off from philosophy.</span>