Answer: Group 1 would have the lowest electronegativity values.
Explanation:
Electronegativity is the power of an atom in a molecule to attract electrons. It is also synonymous with the oxidizing ability or non-metallic character of elements.
Generally, across a given period from left to right, electronegativity increases due to increasing nuclear charge and decreasing atomic radius ( or atomic size ). This is because there is a greater tendency for a smaller atom with higher nuclear attraction to attract electrons than a larger atom with a lower nuclear attraction due to the shielding effect of the nuclear attraction by the inner shell electrons on the outermost electrons in the larger atom.
Also, down a particular group, electronegativity generally decreases due to increasing atomic radius/size.
This is why metals are generally electropositive ( lose electrons ) and non-metals are electronegative ( gain electrons ) as they are both found more on the left and right sides of the periodic table respectively.
The substances which dissolve most readily in water are called soluble substances and they are likely those substances which have the same polarity as water.
Potential energy (Pe) = m*g*h
m = 4 kg
g = 10 m/s²
h = 3 m
And now:
Pe = 4*10*3
Pe = 120 Joules ou J
Iron gains three electrons
Answer:
<h2> a. The diffusion of Na ions into the cell is facilitated by the Na concentration gradient across the plasma membrane.</h2>
Explanation:
Cells differ in the concentration of Na+ and many other chemicals inside and out side of the cell, so diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the membrane.
The diffusion of K+ ions out of the cell is also prevented by the electrical gradient across the plasma membrane.
In the cell, the electro chemical gradient is larger for Na+ than for K+ and many other substances.