Primary alkyl halides tend to undergo the SN2 reaction mechanism in nucleophilic substitution since there is less steric hindrance for nucleophilic attack and the carbocations that they form are not as stable as those formed from tertiary alkyl halides.
1-bromopentane > 1-bromo 2-methylbutane > <span>1-bromo-3-methylbutane</span>> 2-bromo 2-methylbutane
Independent would be the amount of sugar given and the dependent would be the amount of cavities
Scientists have control groups so they can have evidence to show the difference between that one and the experimental ones.
And the independent variable is the one that changes because with out it changing you wouldn't get different results.
I could be wrong tho sorryyy! but i hope this helps
Answer:
Here's what I get
Explanation:
You may have done a Williamson synthesis of guaifenesin by reacting guaiacol with 3-chloropropane-1,2-diol.
A. Mechanism
Step 1
NaOH converts guaiacol into a phenoxide ion.
Step 2
The phenoxide acts as the nucleophile in an SN2 reaction to displace the Cl from the alkyl halide.
B. Improve the yield
You probably carried out the reaction in ethanol solution — a polar protic solvent.
You might try doing the reaction in a polar aprotic solvent— perhaps DMSO.
A polar aprotic solvent does not hydrogen bond to nucleophiles, so they become stronger.
C. Another method of ether synthesis —dehydration of alcohols
Sulfuric acid catalyzes the conversion of primary alcohols to ethers.
This is also a nucleophilic displacement reaction.
Protonation of the OH converts it into a better leaving group.
Attack by a second molecule of alcohol forms the protonated ether.
A molecule of water then removes the proton.
Properties of a substance such as vapor pressure and surface tension depend on electrical forces between particles, as given by Coulomb's law.
The vapor pressure refers to how easily a liquid converts to gas while surface tension is the force that makes a liquid surface act as a stretched elastic skin.
Both vapor pressure and surface tension has a lot to do with the degree of polarity in a molecule. Usually, polar molecules have a low vapor pressure and high surface tension due to a high electrical forces between particles, as given by Coulomb's law.
Learn more: brainly.com/question/13440572
I think that different liquids have different freezing points because every liquid consists of different atoms and different things that make up the atom causing them to have different freezing points.