Answer:
O-H bond
Explanation:
Let us work out the electronegativity difference between the elements in each bond in order to decide which of them is most polar.
For the C-O bond
2.55 - 2.2 =0.35
For the F-F bond
3.98 - 3.98 = 0
For the O-H bond
3.44 - 2.2 = 1.24
For the N-H bond
3.04 - 2.2 = 0.84
The O-H bond has the highest electronegativity difference, hence it is he most polar bond.
We could use solar power, wind power, geothermal power, hydroelectric power, or nuclear power. There are probably more but this is what I can think of off the top of my head. I hope this helps. Let me know if anything is unclear.
Answer:
Molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
Given;
0.60 M concentration of NaOH contains 2.0 L
3.0 M concentration of NaOH contains 495 mL
Molarity is given as concentration of the solute per liters of the solvent.
If the volumes of the two solutions are additive, then;
the total volume of NaOH = 2 L + 0.495 L = 2.495 L
the total concentration of NaOH = 0.6 M + 3.0 M = 3.6 M
Molarity of NaOH solution = 3.6 / 2.495
Molarity of NaOH solution = 1.443 M/L
Therefore, molarity of the sodium hydroxide solution is 1.443 M/L
• Before the balloon was placed inside the hot water, the pressure was the same inside and outside the balloon. The hot water raised the kinetic energy of the air molecules inside the balloon, expanding the balloon, through thermal expansion.
• (1) the pressure of air inside the balloon increased, (2) the volume of the inside of the balloon increased as well, and (3) the temperature of the balloon increased. Note that pressure and volume are inversely proportional, and pressure and temperature are directly proportional. Therefore as the temperature increases, the pressure inside will increase, causing an increase in the volume. At a certain point though the volume will increase too much as to cause a significant decrease in pressure.
• The air molecules will gain kinetic energy, hence (1) increasing the molecules's speed, and (2) heating the air molecules.