Answer: The bond of molecule AB is then best described as a covalent bond
Explanation: The bond molecule AB is covalent because the difference in their electronegativity is not very big
The periodic table<span> organizes the chemical elements according to the number of protons that each has in its atomic nucleus.</span>
Below are the choices:
a. −166 kJ/mol
<span>b. 166 kJ/mol </span>
<span>c. 1.64 kJ/mol </span>
<span>d. 1.66 × 10^5 kJ/mol
</span>
To calculate the activation energy of a reaction, we use the Arrhenius equation. You may want to look it up to see how and why it works. In the problem you posted, there are two temperatures and two rate constants. After some rearranging and substitution of the Arrhenius equation, we have Ea = R T1 T2/(T1-T2) ln(k1/k2) = 8.314 J/mol K (600 K)(650 K)/(600 K-650 K) ln(2.7×10^-4 M^−1sec^−1/3.5×10^−3 M−^1sec^−1) = 166145 J/mol = 166 kJ/mol => choice b
there is more air near sea level
Answer:
great keep up the good work your teacher